Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\text {a }}$ Fredrik C. Størmer, ${ }^{\text {b }}$ Dirk Petersen ${ }^{\text {c }}$ and Arne J. Aasen ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemistry, University of Troms $\varnothing, ~ N-9037$ Tromsø, Norway, ${ }^{\text {b }}$ Department of Environmental Medicine, National Institute of Public Health, POBox 4404 Nydalen, N-0403 Oslo, Norway, ${ }^{\text {c }}$ Department of Chemistry, University of Oslo, POBox 1033, N-0315 Oslo, Norway, and ${ }^{\mathbf{d}}$ School of Pharmacy, University of Oslo, POBox 1068, N-0316 Oslo, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.064$
$w R$ factor $=0.209$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Cycloechinulin, a Trp-Ala-derived alkaloid from the fungus Aspergillus ochraceus

The structure of the Trp-Ala-derived, non-basic alkaloid cycloechinulin from the mycelial mat of the fungus Aspergillus ochraceus is described; systematic name: (3S)-2,3,8,9-tetra-hydro-11-methoxy-3,8,8-trimethylpyrazino $\left[1^{\prime}, 2^{\prime}: 1,2\right]$ azocino-[5,4-b] indole-1,4-dione-methanol (4/1), $\quad \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.25$ $\mathrm{CH}_{4} \mathrm{O}$. There are four independent molecules plus one methanol molecule in the asymmetric unit. The conformations of molecules 1-3 are almost identical, while molecule 4 shows a different conformation in the fused 8-6 ring moiety.

Comment

Aspergillus ochraceus is known to produce a number of alkaloids constructed from various amino acids, such as Phe, Ala, Trp, and Pro (Merwe et al., 1965; Rahbaek \& Breinholt, 1999; Rahbaek et al., 1999). Cycloechinulin (I) was first

(I)
isolated in 1992 in minute quantities, 1.1 mg , from the sclerotia of A. ochraceus by De Guzman et al. (1992). The Trp-Aladerived structure was proposed on the basis of spectroscopic properties, but has not been established by X-ray diffraction. Cycloechinulin (I) is structurally related to the pentacyclic Trp-Pro-derived alkaloid (II) which was isolated from A. ustus by Steyn in 1973, and, more remotely, to those of the echinulin series of compounds, e.g. neoechinulin from A. amstelodami (Barbetta et al., 1969; Dossena et al., 1974; Quilico \& Panizzi, 1943; Steyn, 1971; Yamamoto \& Arai, 1986). Cycloechinulin (I) has been shown to exert moderate insecticidal activity against the lepidopteran crop pest Helicoverpa zea (De Guzman et al., 1992). Substantial amounts of cycloechinulin (I) have now been isolated from the mycelial mat of A. ochraceus and its structure has been confirmed by X-ray diffraction analysis.

The title compound crystallizes in the monoclinic noncentrosymmetric space group $P 2_{1}$ with four molecules in the asymmetric unit together with one methanol molecule. The four independent molecules are shown in Figs. 1-4. The conformations of molecules $1-3$ are almost identical, while

Received 22 August 2001
Accepted 28 August 2001 Online 11 September 2001
molecule 4 is found in a different conformation in the eightmembered dihydroazocine moiety and six-membered 2,5diketopiperazine part of the molecule (see Table 1 and Figs. 58). The indole part of all four molecules is planar and the atoms CX23, OX01, CX10 and CX19 ($X=1-4$), are also in the same plane [largest deviation -0.138 (10) \AA for atom C419]. A selection of bond lengths shows that these are all within the

(II)
normal range of such bonds (Allen et al., 1987). The mean value for the $\mathrm{C}=\mathrm{O}$ bonds is $1.232(15) \AA$, while the CX02 $=$ CX03 bonds have an average bond length of 1.38 (2) A. The mean value of the $\mathrm{CX} 10=\mathrm{CX} 11$ and $\mathrm{CX} 18=\mathrm{CX} 17$ bonds is 1.32 (3) \AA. The molecules are packed in the crystal through a series of intermolecular hydrogen bonds which also involve the methanol molecule (see Table 2).

Experimental

Aspergillus ochraceus, an Australian isolate D2306 (Connole et al., 1981), was grown on Sabourauds agar plates ($\mathrm{pH} 5.9,298 \mathrm{~K}, 10-14 \mathrm{~d}$). The mycelial mat was washed with distilled water $(4 \times 5 \mathrm{ml})$. The extracts were combined, the volume reduced to ca 50%, filtered, centrifuged, and extracted with CHCl_{3}. Preparative TLC (silica gel) furnished ca 100 mg cycloechinulin per m^{2} mycelial mat. Cycloechinulin (I) was spectroscopically characterized before recrystallization. Single crystals of (I) were obtained on slow evaporation of MeOH at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.25 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=359.41$
Monoclinic, $P 2_{1}$
$a=15.222$ (2) Å
$b=16.848$ (2) \AA
$c=15.930$ (2) \AA
$\beta=114.27(1)^{\circ}$
$V=3724.3(8) \AA^{3}$
$Z=8$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
14273 measured reflections 13028 independent reflections 4745 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

$$
\begin{aligned}
& D_{x}=1.282 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=12-18^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.6 \times 0.3 \times 0.3 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-18 \rightarrow 18 \\
& k=-19 \rightarrow 19 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \text { intensity decay: } 12 \%
\end{aligned}
$$

Refinement

Figure 1
A view of molecule 1 of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 10% probability level.

Figure 2
A view of molecule 2 of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 10% probability level.

Figure 3
A view of molecule 3 of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 10% probability level.

Figure 4
A view of molecule 4 of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 10% probability level.

Figure 5
A side view of molecule 1 of (I) with displacement ellipsoids drawn at the 10\% probability level.

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.209$
$S=0.83$
13028 reflections
973 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1209 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.121 \\
& \Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: (Flack, 1983), } \\
& \quad 6232 \text { Friedel pairs } \\
& \text { Flack parameter }=2.7(19)
\end{aligned}
$$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

C102-C119-C118-C117	84.1 (11)	C302-C319-C318-C317-80.2 (10)	
C111-N116-C117-C118	73.0 (13)	C311-N316-C317-C318	76.8 (10)
C202-C219-C218-C217	-84.3 (8)	C402-C419-C418-C417	82.3 (9)
C211-N216-C217-C218	74.5 (9)	C411-N416-C417-C418-71.4 (10)	

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N313-H313 . ${ }^{\text {O }} 203{ }^{\text {i }}$	0.86	2.01	2.847 (6)	165
N301-H301 . ${ }^{\text {O }} 3302{ }^{\text {ii }}$	0.86	2.13	2.919 (6)	153
N201-H201 . . O202 ${ }^{\text {iii }}$	0.86	2.20	2.936 (6)	144
N213-H213 . . O303 ${ }^{\text {ii }}$	0.86	2.03	2.834 (6)	155
N113-H113 . . O403	0.86	2.02	2.861 (6)	167
N413-H413..OO3	0.86	2.08	2.900 (6)	158
N401-H401...O402 ${ }^{\text {iv }}$	0.86	2.07	2.859 (6)	152
N101-H101 . . O102 ${ }^{\text {v }}$	0.86	2.12	2.928 (6)	156
O501-H501 \cdots O103 ${ }^{\text {i }}$	0.82	1.87	2.677 (6)	167

Symmetry codes: (i) $1-x, \frac{1}{2}+y, 1-z$; (ii) $1-x, y-\frac{1}{2}, 1-z$; (iii) $2-x, \frac{1}{2}+y,-z$; (iv) $1-x, \frac{1}{2}+y, 2-z ;$ (v) $2-x, y-\frac{1}{2}, 1-z$.

Figure 6
A side view of molecule 2 of (I) with displacement ellipsoids drawn at the 10% probability level.

Figure 7
A side view of molecule 3 of (I) with displacement ellipsoids drawn at the 10% probability level.

Figure 8
A side view of molecule 4 of (I) with displacement ellipsoids drawn at the 10\% probability level.

The large s.u. value of the Flack (1983) parameter, 2.7 (19), indicates that the absolute structure cannot be determined with Mo radiation. The stereostructure of the asymmetric carbon, C114 (C214, C314 or C414) in the Scheme and Figs. 1-8 was just assumed tentatively. The value of $(\Delta / \sigma)_{\max }$ is $0.121(>0.10)$ and the C 119 has ADP $\mathrm{max} / \mathrm{min}$ ratio 4.20 . These results may be due to the packing of four independent molecules.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELLDIM in CAD-4-PC Software; data reduction: XCAD4 (McArdle \& Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1993).

The Aspergillus ochraceus strain used in this study is a generous gift from Dr P. G. Mantle, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England. The authors are indebted to ing. Hilde Røise, ing. John \emptyset. Vedde and ing. Gunnar Isaksen, Department of Chemistry, University of Oslo, Norway, for recording the MS and IR spectra.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Barbetta, M., Casnati, G., Pochini, A. \& Selva, A. (1969). Tetrahedron Lett. pp. 4457-4460.
Connole, M. D., Blaney, B. J. \& McEvan, T. (1981). Aust. Vet. J. 57, 314-318.
De Guzman, F. S., Gloer, J. B., Wicklow, D. T. \& Dowd, P. F. (1992). J. Nat. Prod. 55, 931-939.
Dossena, A., Marchelli, R. \& Pochini, A. (1974). J. Chem. Soc. Chem. Commun. pp. 771-772.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.
McArdle, P. \& Higgins, T. (1995). XCAD. University College, Galway, Ireland.
Merwe, K. J. van der, Steyn, P. S. \& Fourie, L. (1965). J. Chem. Soc. pp. 70837088.

Quilico, A. \& Panizzi, L. (1943). Chem. Ber. 76, 348-358.
Rahbaek, L. \& Breinholt, J. (1999). J. Nat. Prod. 62, 904-905.
Rahbaek, L., Breinholt, J., Frisvad, J. C. \& Christophersen, C. (1999). J. Org. Chem. 64, 1689-1692.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Steyn, P. S. (1971). Tetrahedron Lett. pp. 3331-3334.
Steyn, P. S. (1973). Tetrahedron 29, 107-120.
Yamamoto, Y. \& Arai, K. (1986). Alkaloidal substances from Aspergillus species. In The Alkaloids, Chemistry and Pharmacology, edited by A. Brossi, Vol. 29, pp. 185-263. Orlando: Academic Press Inc.

